S

Mixtral 8x22B vs Phi-3 Medium

Comprehensive comparison of two leading open-source AI models

Mixtral 8x22B

ProviderMistral AI
Parameters141B (8x22B MoE)
KYI Score9/10
LicenseApache 2.0

Phi-3 Medium

ProviderMicrosoft
Parameters14B
KYI Score8.3/10
LicenseMIT

Side-by-Side Comparison

FeatureMixtral 8x22BPhi-3 Medium
ProviderMistral AIMicrosoft
Parameters141B (8x22B MoE)14B
KYI Score9/108.3/10
Speed7/109/10
Quality9/107/10
Cost Efficiency8/1010/10
LicenseApache 2.0MIT
Context Length64K tokens128K tokens
Pricingfreefree

Performance Comparison

SpeedHigher is better
Mixtral 8x22B7/10
Phi-3 Medium9/10
QualityHigher is better
Mixtral 8x22B9/10
Phi-3 Medium7/10
Cost EffectivenessHigher is better
Mixtral 8x22B8/10
Phi-3 Medium10/10

Mixtral 8x22B Strengths

  • Top-tier performance
  • Efficient for size
  • Long context
  • Apache 2.0

Mixtral 8x22B Limitations

  • Requires significant resources
  • Complex deployment

Phi-3 Medium Strengths

  • Excellent efficiency
  • MIT license
  • Long context
  • Fast

Phi-3 Medium Limitations

  • Lower quality than larger models
  • Limited capabilities

Best Use Cases

Mixtral 8x22B

Complex reasoningLong document analysisCode generationResearch

Phi-3 Medium

Edge deploymentMobile appsChatbotsCode assistance

Which Should You Choose?

Choose Mixtral 8x22B if you need top-tier performance and prioritize efficient for size.

Choose Phi-3 Medium if you need excellent efficiency and prioritize mit license.