Ray

Distributed computing for AI

Distributed AI with Ray

Scale your AI workloads with Ray's distributed computing framework.

#

Installation

bash
pip install ray torch transformers

#

Distributed Inference

python
import ray
from transformers import pipeline

ray.init()

@ray.remote def generate_text(prompt): generator = pipeline("text-generation", model="gpt2") return generator(prompt, max_length=100)

results = ray.get([generate_text.remote(f"Prompt {i}") for i in range(10)])

#

Use Cases

  • Distributed training
  • Parallel inference
  • Hyperparameter tuning
  • Large-scale data processing